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Chaos and noise in a truncated Toda potential
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Results are reported from a numerical investigation of orbits in a truncated Toda potential that is per-
turbed by weak friction and noise. Aside from the perturbations displaying a simple scaling in the am-
plitude of the friction and noise, it is found that even very weak friction and noise can induce an extrin-
sic diffusion through cantori on a time scale that is much shorter than that associated with intrinsic
diffusion in the unperturbed system. The results have applications in galactic dynamics and in the for-

mation of a beam halo in charged particle beams.

PACS number(s): 05.45.+b, 05.40.+j

In the past several years, substantial interest has cen-
tered on the study of stochastic orbits in nonintegrable
Hamiltonian systems. In particular, much work has fo-
cused on the phenomenon of intrinsic diffusion through
cantori, e.g., using the “turnstile” model of MacKay,
Meiss, and Percival [1], which leads to interesting scaling
behavior [2], and, more recently [3], through the utiliza-
tion of local Lyapunov exponents [4]. However, with a
few notable exceptions (cf. [5]), little has been done to
determine how the results derived from such analyses are
changed if non-Hamiltonian perturbations are allowed.
This is an issue of key importance given the connection
between dynamical chaos and the foundations of classical
statistical mechanics [6]. Furthermore, diffusion through
cantori, catalyzed by weak noise (modeling, e.g., close en-
counters between stars) may be important for orbit dy-
namics studies of galaxies [7] and beam halo formation in
intense, mismatched charged particle beams [8].

In modeling a physical system in terms of a few degrees
of freedom Hamiltonian, one is usually implementing a
reduced description, e.g., in terms of collective coordi-
nates, that neglects (hopefully) weak couplings to an
external environment and/or various (relatively) unim-
portant degrees of freedom. Such weak, and in principle
unavoidable, corrections can often be viewed as a source
of friction and noise, related via a fluctuation-dissipation
theorem. Naively, one might expect that weak coupling
to an environment should only have effects on very long
time scales. While this expectation is true for quantities
such as adiabatic invariants, it is not true in general. For
chaotic systems such effects can in fact be important on
time scales much shorter than the natural relaxation time
scale. A potentially significant example is reported in
this paper.

The system considered here is the sixth order trunca-
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tion of the Toda [9,10] potential, which leads to the Ham-
iltonian
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where {x,v,} and {y,v,} represent conjugate pairs. This
Hamiltonian is nonintegrable and its regular and stochas-
tic regions have been characterized in Ref. [10]. The
third order truncation of the Toda potential leads to the
well-known Hénon-Heiles potential [11] used to model
nonlinear dynamics in galaxies. The sixth order trunca-
tion was chosen to yield a bounded phase space: this is
essential for the existence of an invariant measure.

The Hamiltonian evolution was perturbed by allowing
for a constant friction —nv and §-correlated additive
white noise F(z), related via a fluctuation-dissipation
theorem with temperature © ~E. As described below,
the principal conclusions have also been observed [7] in
another nonintegrable potential.

For each initial condition, an unperturbed Hamiltoni-
an trajectory was computed. Multiple Langevin simula-
tions were then performed, using a numerical algorithm
(cf. [12]) which generates a random F with the proper
first and second moments. The total time for each in-
tegration was ¢ <140 (the dynamical or crossing time is
of order unity and the time step 4 =0.001).

Viewed over long time scales, the unperturbed Hamil-
tonian trajectories divide naturally into only two classes,
namely, regular orbits, with vanishing Lyapunov ex-
ponent, and stochastic orbits, with nonvanishing
Lyapunov exponent. However, on shorter time scales,
the stochastic orbits divide in turn into two relatively dis-
tinct types, namely, filling stochastic orbits, which travel
unimpeded throughout the stochastic regions and
confined, or sticky, stochastic orbits, which are trapped
near islands of regularity by cantori [13], and only escape
over much longer time scales. It is therefore meaningful
to consider the effects of friction and noise separately on
these three different orbit classes.
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Experiments focused on the energy range 10 < E <100,
with 10712<9<10"% and 0.1<O/E<10.0. Two
different types of experiments were performed.

(1) For each of a large number of individual initial con-
ditions, corresponding to both regular and stochastic or-
bits, N =48 different noisy realizations were effected.
The orbits were compared to the unperturbed trajectories
and analyzed statistically to extract the first and second
moments of such quantities as the position, velocity, and
energy, e.g.,

N
<|aE|2>55E§mz% S (Eyp—E,)? . @)
i=1

(2) The near-invariant distribution associated with the
Hamiltonian evolution was sampled to extract 400 initial
conditions corresponding to stochastic orbits, and 100
noisy realizations were effected for each of these initial
conditions. The outputs were then analyzed in two ways,
(a) by comparing with the unperturbed trajectories to ex-
tract first and second moments which average over the
ensemble of initial conditions, and (b) by binning the or-
bital data at fixed time intervals to study systematic
changes in the form of the near-invariant distribution.
The large number of initial conditions and realizations is
needed to have acceptable statistics. The particular
values of the friction coefficient were chosen so as to
bracket the values of physical interest in galactic dynam-
ics and beam transport [7,15].

Viewed in energy space, weak friction and noise serve
to induce a classical diffusion process. Specifically, at
least for early times, when 6E__/E, <<1, 8E
satisfies the simple scaling relation

8E2, = AXE)En®t , 3)

with A(E) only weakly dependent on E. This scaling
holds for all three classes of orbits, regular, sticky sto-
chastic, and filling stochastic. It also holds for individual
initial conditions as well as for ensembles of initial condi-
tions. Viewed in energy space, one cannot distinguish be-
tween different orbit classes (which is as expected, since
the energy is an invariant in the absence of friction and
noise).

Viewed in configuration or velocity space, friction and
noise have more complicated effects, the form of which
depend on whether the orbit is regular, sticky stochastic,
or filling stochastic. For regular orbits the second mo-
ments in position and velocity grow as a power law in ¢,
albeit more rapidly than the analytically predicted rela-
tion 8,80, s - - - < £'/% satisfied by the integrable
cases of a harmonic oscillator or a free particle. By con-
trast, for stochastic orbits these rms quantities grow ex-
ponentially at a rate A that is comparable in magnitude
to the Lyapunov exponent Y, which characterizes the
average instability of the Hamiltonian orbit (see Fig. 1).
This conclusion holds both for entire ensembles and for
individual initial conditions. In the latter case, one also
observes a direct correlation between the growth rate A;
for an individual initial condition and the local Lyapunov
exponent Y; for that initial condition. This behavior is
consistent with the intuitive explanation that noise
“blurs” a sharp classical trajectory and this “blur” is then
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FIG. 1. The early time exponential growth  of
87 s =(8x 2 +8y2 )1/? (dashed curve) and the corresponding 8v
(solid curve) for E =30 and 7=10"" is clearly apparent in this figure.

blown up by the chaotic dynamics on a time scale set by
the maximal Lyapunov exponent. This correlation is par-
ticularly strong for the case of weak friction and noise.
Moments for the confined stochastic orbits exhibit an in-
termediate behavior.

Despite these differences, the moments for all three
classes of orbits exhibit a simple scaling in terms of © and
1. Specifically, provided that the deviations have not be-
come macroscopic (i.e., assuming &x,...,8y . <<1), all
three classes of orbits satisfy a scaling relation

8X 1ms> 8 rmss OV, rmsr OV, rms & On°F(E,t) , (4)

where a =b=0.50£0.01 for the range of values probed.
This was confirmed both for multiple realizations of indi-
vidual initial conditions and for ensembles of initial con-
ditions corresponding to stochastic orbits. It follows
that, even for stochastic orbits, one observes the same
scaling in © and 7 as for regular orbits in a harmonic os-
cillator potential, although the time dependence is ex-
tremely different.

Another common feature of all three orbit classes is
that, at sufficiently early times, the time dependence is
reasonably well fit by a power law, i.e.,

S-ers’Syrms’avx,rms’ay,rmsGCF'(E)eanbtC ) &)

The interval over which such a fit is appropriate depends
on the orbit class: filling stochastic orbits rapidly begin to
show an exponential divergence, confined stochastic or-
bits only somewhat later, and regular orbits continue to
manifest an approximate power law growth. The best fit
value of ¢ depends on the sampling interval: Fitting for
relatively short times yields a value ¢ =~1.10-1.25. Fit-
ting regular orbits over longer times yields ¢ =1.20-1.50.

To investigate the generality of these scaling relations,
simulations were also performed for the dihedral D4 po-
tential of Ref. [14], with a choice of parameter values
which leads to a large amount of stochasticity.
Specifically, the Hamiltonian was taken to be of the form

H=%(U§+U},2)“(M/2)(x2+y2)—(a /4)(x24p2)?
—(b/2)x2y2, (6)
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with M=2,a=—1,and b=1.

Analysis of these simulations shows once again a scal-
ing of the form given by (4) and (5), with the same values
a=b=0.50£0.01. The best fit ¢ for Eq. (5) shows more
variability from run to run, so that a detailed comparison
is difficult to effect. However, the data are consistent
with the conclusion that ¢ is the same for both models.
When viewed in energy space, friction and noise again in-
duce a simple diffusion process of the form (3) for the D4
potential.

Generic ensembles of initial conditions corresponding
to filling stochastic orbits, when evolved with the truncat-
ed Toda Hamiltonian (1), exhibit a coarse-grained ex-
ponential evolution towards an approximately invariant
distribution [3]. For high energies E = 50, where the reg-
ular regions are very small, this distribution appears to
correspond to a true invariant measure. However, for
lower energies, where the relative measure of the regular
regions is larger, this distribution slowly changes in form
over longer time scales. As a result of intrinsic diffusion,
the orbits can pass through the cantori to occupy phase
space regions near the regular islands from which they
were excluded at earlier times.

At a coarse-grained level, an ensemble of orbits can be
characterized numerically by binned, projected distribu-
tions, such as f(x,y,t;At) or f(y,vy,t;At), constructed
by averaging the binned orbital data over some time in-
terval At [3]. In order to compare two different distribu-
tions f, and f,, one requires a notion of distance. This
was provided through the introduction of a coarse-
grained L! norm: For two identically normalized distri-
butions, f,(x,y) and f,(x,y), binned in an n Xn grid of
cells of size {Ax,Ay},

n n n
Dfl,z(x’y)zz z \fl(x,y)~f2(x,y)| Efl(x’y) .
R = )
It is with respect to this measure of distance that the
Hamiltonian flow evidences an evolution towards a near-
invariant measure.

However, if this near-invariant measure were evolved
into the future, allowing for even weak friction and noise,
one can observe systematic changes on time scales much
shorter than the intrinsic diffusion time scale. The fric-
tion and noise can induce a significant extrinsic diffusion
which allows filling stochastic orbits to become confined,
thereby populating regions of the phase space near regu-
lar islands which were avoided by the deterministic near-
invariant measure.

The Hamiltonian evolution conserves energy, restrict-
ing orbits to a constant energy hypersurface. When fric-
tion and noise are included, the energy is no longer con-
served. However, it is approximately conserved over
sufficiently short time scales, so that one can still speak of
an “almost constant energy hypersurface.” It is therefore
meaningful to quantify the degree to which friction and
noise alter the form of the near-invariant distribution on
a near-constant energy hypersurface.

For the Toda potential, the observed changes are
larger for lower energies, where the regular regions
comprise a bigger fraction of the available phase space.
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The case of E =30, where cantori are very important, is
particularly illuminating. For =107, there is clear evi-
dence that the noisy ensemble is evolving towards a new
distribution which, over times scales ¢ ~ 100, is approxi-
mately time independent. For =10"°, there is again a
nontrivial time evolution, but the changes occur too slow-
ly to see clear evidence of an approach towards a new
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FIG. 2. (a) A gray scale plot of the deterministic near-invariant
folx,y) for E=30, generated from a 40X40 binning. Darker shades
represent higher densities. (b) The corresponding gray scale plot for the
near-invariant fn(x,y) for E=30 and 17=10_6. (c) The difference
Folxp)—fo(x,p).
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time-independent form. For 5=10"% changes in the en-
ergy are too large to speak of an approximately constant
energy hypersurface. However, the data are still con-
sistent with an evolution towards a modified distribution
in which cantori around the regular regions have been
breached.

This behavior is illustrated for £ =30 in Fig. 2. The
first panel shows the form of the near-invariant distribu-
tion f(x,y) associated with the deterministic evolution.
The second panel shows the form of the noisy near-
invariant distribution f,(x,y) for 17=10_6. The final
panel exhibits the difference fo(x,y)—f,(x,y). The
deterministic distribution fy(x,y) has four sharp relative
minima which have become blurred somewhat in the
noisy f,(x,y) by the diffusion of orbits into lower density
regions. Both here and for other energies, the evolution
from f, to f q is well fit by an exponential, with a rate A
that scales roughly as Inn. For a 10X 10 binning, the best
fit values for the slope are, for n= 107°, A= —0.0143; for
n=10"% A=—0.0339; and for n=10"*% A= —0.0460.

The fact that orbits can pass through cantori, going ei-
ther in or out, implies the possibility of changes in orbit
class between filling and confined stochastic orbits. It is
difficult to construct a simple numerical algorithm to de-
cide when an orbit has changed class. However, visual
inspection of a large number of orbits (~10*) leads to
qualitative conclusions that are easily summarized. At
high energies, E =50, changes in orbit class are infre-
quent since the size of the phase space region restricted
by cantori is relatively small. However, for lower ener-
gies, these regions become larger and changes in orbit
class more common.

This can be quantified by determining the minimum
amplitude of friction and noise required to induce one or
more changes in orbit class for a significant fraction of
the orbits within time #=100. Consider, e.g., the case
E=20 and ©~E. For 1<<107?, the friction and noise
are too weak to cause a significant number of orbits to
change class. However, for 7~ 10~°, friction and noise
begin to become more important, and, already for
77=10_6, as many as 50% of the noisy realizations for
any initial condition can result in a change between filling
and confined stochastic. Such changes are not accom-
panied by changes between regular and stochastic orbits,
which, deterministically, are separated by KAM tori,
rather than cantori. Only for 7>10"3 are many such
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changes observed.

What these simulations imply is that even very weak
friction and noise, with characteristic time scale ¢5 > 10°
characteristic crossing times ¢, can have significant
effects within a time as short as ~ 10%_,. This has impor-
tant implications for problems in galactic dynamics and
beam halo formation in charged particle beams.

In galactic dynamics attention focuses on the construc-
tion of models of galaxies which involve ensembles of or-
bits evolving in a self-consistently determined potential,
ignoring all non-Hamiltonian irregularities. The calcula-
tions reported here suggest that such self-consistent mod-
els could differ substantially from the types of objects
which might arise in nature if one were to allow for these
irregularities. In particular, confined stochastic orbits
have been used to help support structures such as bars in
phase space regions such as corotation where, owing to
resonance overlap, few, if any, regular orbits exist. How-
ever, if noise facilitates enhanced diffusion through can-
tori, it could serve to destabilize certain structures
and/or lead to the formation of other new structures in a
time scale well within the age of the Universe.

The newly developed ‘“‘core-halo” model describes the
beam halo in mismatched charged particle beams [8]. In
this model, the transverse motion of the halo particles is
chaotic, and particles initially in the beam core can leak
out through a broken separatrix and be carried to large
amplitudes. This is a serious design issue for high inten-
sity linacs planned for future accelerator-driven technolo-
gies. Particle-particle scattering and fluctuations in the
external electromagnetic fields can provide a mechanism
for halo formation; the results of this paper indicate that
the halo may be formed much more rapidly than the sim-
ple diffusion time estimate. This possibility is now under
investigation [15].
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FIG. 2. (a) A gray scale plot of the deterministic near-invariant
folx,y) for E=30, generated from a 40X40 binning. Darker shades
represent higher densities. (b) The corresponding gray scale plot for the
near-invariant f,,(x.y) for E=30 and 13=10"6. (¢) The difference
Solx,y)=f(x,p).



